
Email: info@4irelabs.com Website: 4irelabs.com

Rebalance Contracts Audit

Oleksandr Zadorozhnyi

Viacheslav Vozniuk

May, 2024

mailto:info@4irelabs.com
https://4irelabs.com/


CONFIDENTIAL

This document and the Code Review it references is strictly private, 

confidential and personal to its recipients and should not be disclosed, 

copied, distributed, or reproduced in whole or in part, not passed to any 

third party.

1. �� Introduction. Rebalance requested 4irelabs a review of their 
contracts.


There are 13 contracts source code in scope (first review on commit 
e0147c1f55e8e12d280b96bcca89e1ae22ae7a7d)�

� ProtocolAccessControl.so�
� InterestVaultV1.so�
� VaultRebalancerV1.so�
� VaultPermit.so�
� RebalancerManager.so�
� InterestLocker.so�
� ProviderManager.so�
� AaveV3Sepolia.so�
� CompoundV3Arbitrum.so�
� RadiantV2Arbitrum.so�
� AaveV3Arbitrum.so�
� LodestarArbitrum.so�
� DForceArbitrum.sol

2. Warranty. Audit is provided on an "as is" basis, without warranty of any 

kind, express or implied. The Auditor does not guarantee that the Code 

Review will identify all instances of security vulnerabilities or other related 

issues.



3. Executive Summary. Provided contracts realize managed vault logic 

on top of other lending markets. Users can deposit and withdraw their 

assets to the vaults which are managed by the address with the 

Rebalancer role. Admins can grant Rebalancer roles and change the 

most important protocol parameters, including fees, treasury address, 

minimum deposit amount, etc. There are no known compiler bugs, for 

the specified compiler versions, that might affect the logic of the 

contracts.

4. Critical Bugs and Vulnerabilities. No Critical and Major issues have been 

found.



5. Line by line review.

5.1 VaultRebalancer.sol:

5.1.1 Note: Line 41. Constructor’s NatSpec missing description for 

userDepositLimit_, vaultDepositLimit_ and withdrawFeePercent_ 

parameters.

5.1.2 Note: Line 61. Redundant sanity checks in the constructor, same 

validations would be performed in the ‘_setDepositLimits’ 

function.

5.1.3 Low: Line 128. Vault contact includes the ‘_checkRebalanceFee()’ 

function to check if rebalancer provides a reasonable fee 

amount that is less than max fee percent, however fee charging 

could be executed through rebalance multiple times in a row, 

forcing users to pay unreasonable fees that they not expected.


Recommendation: Consider adding a restriction mechanism 

based for example on a time lock pattern that would disallow 

charging fees multiple times in a short period.

5.2 InterestVaultV1.sol: 

5.2.1 Low: Line 121. If the ‘initializeVaultShares()’ function would not be 

called during vault deployment, this would open room for the 

execution of the inflation attack. 


Recommendation: Consider adding a check to the deposit and 

mint function that the vault is initialized or make sure that vault 

initialization is executed at the same time as vault deployment.



5.2.2 Low: Line 167. The ‘approve’ function saves allowance value in 

terms of underlying assets while users call it with a shares 

amount. Over time the exchange rate between shares and 

assets would grow, meaning that previously set allowance could 

be not enough to fully utilize the user's shares balance, this 

would break users expectations.


Recommendation: Consider saving allowance value within 

shares instead of converting it to assets.

5.2.3 Low: Line 679. The ‘setTreasury()’ function fails to check if the 

provided address is not zero. Setting treasury to zero address 

accidentally or intentionally could potentially DOS withdrawing 

and rebalancing processes for tokens that revert on transfer to 

the zero address.


Recommendation: Consider adding zero address checks for the 

treasury address in the ‘setTreasury()’ function and constructor.

5.3 RebalancerManager.sol: 

5.3.1 Low: Line 28, 64. The allowedExecutor mapping and the 

‘allowExecutor’ function provide access control and duplicate 

the ProtocolAccessControl.sol functionality. 


Recommendation: Add the Executor role and use 

ProtocolAccessControl.sol for access control.



5.3.2 Low: Line 48, 90. When rebalancing a vault with all provider 

funds (assets == type(uint256).max), the provider method 

‘getDepositBalance’ is called twice with the same parameters.


Recommendation: Call the ‘getDepositBalance’ provider 

method once and continue working with the balance value. If 

the ‘_checkAssetsAmount’ method is not planned to be used 

elsewhere, move the provider's funds check to the 

‘rebalanceVault’ method and remove the ‘_checkAssetsAmount’ 

method.

5.4 InterestLocker.sol: 

5.4.1 Low: Line 91. The TokensLocked event is missing the unlockTime 

parameter from the created lock. 


Recommendation: Add the unlockTime parameter to the 

TokensLocked event.

5.4.2 Note: Line 102, 104. Вefore reading the LockInfo data, it is 

necessary to check whether the beneficiary is the sender.


Recommendation: Move sender validation before reading the 

LockInfo data.

5.4.3 Note: Line 37. Missing NatSpec comments for all functions.


Recommendation: Add all NatSpec comments.

5.5 AaveV3Sepolia.sol, AaveV3Arbitrum.sol:

5.5.1 Note: Line 21, 32, 46, 55. Different names for the same logical 

variable. 


Recommendation: Use one variable name.



5.5.2 Note: Line 21, 22, 32, 33, 46, 47, 55, 56. Variables are created that 

are used once.


Recommendation: Use ‘_getPool’ instead of the created 

variable.

5.5.3 Note: Line 37. Missing NatSpec comments for the ‘_getPool’ 

function.


Recommendation: Add a comment to the ‘_getPool’ function.

5.6 RadiantV2Arbitrum.sol:

5.6.1 Note: Line 21, 31, 48, 59. Different names for the same logical 

variable. 


Recommendation: Use one variable name.

5.6.2 Note: Line 21, 22, 31, 32, 48, 49, 59, 60. Variables are created that 

are used once.


Recommendation: Use ‘_getPool’ instead of the created 

variable.

5.7 LodestarArbitrum.sol: 

5.7.1 Low: Line 22. Import "hardhat/console.sol". 


Recommendation: Remove import.


